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4.1 Maximum and Minimum Values

Learning Objectives: After completing this section, we should be able to

• find absolute extrema and local extrema of a function via its derivative.

Here are some questions we are trying to answer:

• How many items should a manufacturer make to

• What trajectory of an object

• What position gives

Here are some informal definitions. See the textbook for the formal definition if you are interested.

The point (c, f(c)) is a:

• local maximum if

• local minimum if

• absolute max or global max if

• absolute min or global min if

Maximize profit.

would be opting when travelling to a certain height

maxeffectancy

/relative ⑧-
fru

frcfrx)

for all x near C
↑

f(x)

on both sides of C C

relating
M

for fra W·fra
for all a near frx

↑

or both sides of C C
-
Efrar) global

reme Max inves

frar fix --~⑪ ⑧

for all xin the ⑧-
domain of f - local min

· d
*

frc) =f(x)
Efrar) global minimum

for all xin Th
M frx)

domain of f

Weq

rfrail global min
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There are some fringe cases

Theorem (Extreme Value Theorem). If f(x) is continuous on a closed interval [a, b], then

Note: Local minimums and maximums must be

·

aptotesare
not

extracewaresfret
notdefineat

↑

· hoins or
fre is defined on an open

interval

1 /infrx= 1 butfri is un defined, so if
x+3--- fre can'tbe a max valua

I

↳

f has an absolute minimum val va and an absolut

Maximum valua 01 tha inter a fa-b]. a
global

global max ↑global
-

Ex 8. ↳ MaX ·
0

↑ ↑ ↑: ↳ &a sal
A G

mir
↑

of those 3
stobal ↑

=>on examplenwhere the mir globa

Extreme Var Ahm
=>not

continuous on
=>notconinuors

mi

applies Fab]lout global on [a] fout on
extrema exist the global min exists.

atinterior points;e a c - b thr X
=
C is the location of

~

an interior point. ·global max

·
local/global max =>nota local max

·
a

· I ↑oca

⑧ ↑ I
a

global
·

min 1

gual
⑨ mi

Endpoints are notlocal extreme, as they are =>nota
loca mis

notinterior points. However, theyare potentiallyglobal extrema.
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Fact: A local extrema can only occur at x

Definition. If c is an interior point in our domain; i.e., a < c < b, then c is a

Question. True or false: If f 0(c) = 0 or does not exist, then there must be a local max or min at x = c.

Question. True or false: If a local max or min occurs at x = c, then f 0(c) = 0 or does not exist.

Question. True or false: Maximums or minimums only occur at critical values.

If f(x) =0 or if fix) DNE
local max
but fDNE
·

mar
local min

& called a

critical value/aumbar of f iffro =

0 or ficrANE

l

False fiANE
2

~
xfrx

notforor
f(u)

=0

2
-

↑ruc:This is the ~FActnoting local maxes
3mins

ar loca -x+r2ma
local max local max

↳fere
roc ↑f

Falso;the question ignores absolute/global extrama. This is

free

ofarenastate
a

critica numbar

a

↑

global mix butnotata critical number
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Fact: If f(x) is continuous on [a, b], then

Example. Let f(x) = ex sin(x) on [�2, 7]. Find the absolute maximum and minimum.

~ bythe Extreme Vale Thore, global extrama
exist. These two extrama either occur ata critical number

or an endpoint.

Check critical numbers and endpoints
frx =eX .sinx)

frx) =e.cos) +esin of ther s no bad behavior, so the

derivative exists for all Xin f-2-7]

to find critical numbers satf(x)
=0

ecosix fe" sine =0

=>eTcos +sinv] =0
↳

-

->cosra
+sin(x) =0

never o

=>
=>tar= -

socusing a calculator, fans -- for xin E-27] if

x =-- critical numbers

Check endpoints and critical numbers be
f(x)= esinrx

·-
fr-z) =e-sin(2) - 0.125

-

f( -) =e*siny =

- 0.3224

fr=esin .4605
-

fr)=esin - 12.64 global min value is approximate
- 2.64 arx=2

fra) =esin=20.4 global maxvalue - 1720.43 located

a+x=7
approximately
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We need to be careful with our terminology.

· The globe evalue is approximately 20.2 (4-coordinate
The global maximum rat or isat

Maximum↑ B

X=7 ~x-coordinate

↳ The global Max is the countries an x-and-value!

-4
Pont

wire
the global minimum value is approximately-32. coordinate

located atX = (x-coordinate-
the global minimum is approximately2.6y

Port
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4.2 The Mean Value Theorem

Learning Objectives: After completing this section, we should be able to

• use the Mean Value Theorem and apply it to prove other results.

Example. Suppose you are driving on a highway. You note that you have travelled 100 miles in the last 2
hours. What do you know about your instantaneous velocity at any point on the trip?

t

distance at t hours

At some point,

Theorem (Mean Value Theorem). If f is continuous over [a, b] and

· scenario:startfast

o-
end stow

·

2loo

surph
stops vasciit · scenario where we start

slow, butthis

average So fast,

somp
popu

·slopc =somph

↑
rou 2

the instantaneous velocity mustbe 50 mph.
If you start outslow, then go

fastthen atsome
-

pointyou ware travelling exactlyas50 mph.

differentiable on rambl
then, there is atleastone number a in (arb

such thatthe instantaneous rate of change of fat

C S the average rate change of f over farb]/e
f-rc) =
f(b) - fra
b - a

M

fral- All of c._and
1

as possibleS

evr numbers from the Mean Value

S Theorem.
ad I ↑ ↑ ↓

I b



MTH 150 Section 4.2: The Mean Value Theorem Page 7 of 28

Example. Let f(x) = |x|. Note f(�1) = 1 and f(2) = 2.

Example. Let f(x) =
p
x. Note f(0) = 0 and f(4) = 2.

Example. Suppose f is continuous on [a, b] and

Nater the AROC =

frz- fez -

fre=/x
2 - run

- 3
Is there a c in f-1,2) such that

· (2,2)
f(x) =5?

1- 1_)
&
sharp corner atroof No. Tha Mean Value theorem requires

so f is notdifferentiabic f to be continuous on E-12]
- Ther
I stopc =

and reticstosourdesslop = -

↑of apply

· (42) AROC =

f(4) - fro =2 - 0
-

↑
-

rafra 4 - 0 4
I

⑧

east Is there a c in No.4 such
se

thatfrc
=I?

⑧ ↑
10,0 ↑ Does the artappi?

of is continuous on 10-4]
of is differentiable on (0.4

Yes!

Let'sfind c. fi) = frafr=E. Nafre==xfr=
↑
-

=>I=z.
I

=rz = -2

=1 =

ct=c =

r
=1.Sorc) ischer fr=

differentiabl on Carb where frar=flor

thanthe are guarantees -herz -S u c in rand

frc) =
frb)-fra

such that b - a
=Fa =0

&Lis is Rolle Theorem

=>typically we prowe Rolestheorem first, and
~has vic this to prove Mut
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Example. In Iowa, there are marks on the interstate highway every 0.1 miles visible to an airplane or
helicopter. The speed limit on the interstate is 70 mph. A police helicopter notices that a car crosses one
mark and then 4.8 seconds later the car crosses the next mark. Will the driver get a speeding ticket?

Car travelled 0.1 miles 1 4.8 seconds.

hat dit to the distance af fire to batwace

the car and the initial mark.

=>dro=0 miles

4.8 seconds. I win

60 secones
some 50 hours

=>do) =0.1 miks.

Note, diff is continuous on foot, and
differentiable on locator. The arepromises
&have there is a c in rotor such that

dra -
drel - dro 0.1 - 0

- o

=

iso
=75 mph

the car gets a speeding ticket.
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4.3 Derivatives and Shapes of Graphs

Learning Objectives: After completing this section, we should be able to

• find the intervals of increase and decrease of a function using the first derivative of the function.

• find the intervals of concavity of a function using the second derivative of the function.

4.3.1 First Derivative

Definition. Increasing/Decreasing

• If f 0(x) > 0 on

• If f 0(x) < 0 on

Example.

Fact: The only places f changes from increasing to decreasing

The first derivative test for local extrema: If f(x) is continuous on [a, b] and di↵erentiable on (a, b)
except

• If f 0(x) changes

• If f 0(x) changes

• If f 0(x) doesn’t change

an internal than fix isincreasing on

↓hatinterval.

an interval, then fix is decreasing on

thatinterval

-Westops
to stopera

- e

increasing- increasing
&creasing

or decreasing to increasing is when farzo or when

f- ANE
slope =0

⑤

m
· fDNE

-

increasing usingerasing

atcritical numbers, then

from positive to negative at x =2, thin there is

a local Maximum located atX=C

from engative to positive atX= Cthan there is

a local minimum located atX
=2

Sis at x=Cthen there is to extreme at

X=C
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Example. Let f(x) = 2x3 + 3x2 � 12x+ 1. Find all local extrema.

↑Edantifycritical numbersies where is fiezo or
fire INE?

f(x) =6x2 +6x - 12, not fret exists everywhere

=6x2 +x - 2]
= 6f(x +2)(x - 11)0

So, fezwhen x=-2 and when X=1 Those are the

critical numbers

&Determina intervals ofincreasing and decreasing.

· Draw a
number line and label -

· testvalues between critical numbers to determine the size of fixt

onx-values where

Ican chang

-/ sig

Sise chart * S -
for fixr=6rx+2)(x- x fr x

=
2

-n f(x= -3x=-2+rx=
0

always label f1-3) =6(312)13- 1) f/o =grofz f(z)
=6(2+z)(z-r)!

Arresti + i Her f

-0
-0

-0

-> Interpretthe size chart
and applyfirstderivative test

Noty freeor to-2) and for

So fix is increasing on 1-0, -z) U(Ico

Notefree on 12-so fix is decreasing on f-2

↑ stdariv testi x
=>local max at X=-2

7 -2

=>local min atx= ↓
⑧
↑

local maxvalue atX=-2 is f(-2) =21 -2 +3( -22 - 12-2f =2r

local min value a+x =15s f(() =2(113 +3(1 - 12(1)+) =- 6
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You try!

Example. Let f(x) = 3x5 � 20x3. Find all local extrema.

X =>f(x) =15x4 - 60x2 Motor for exists every
where

=15x2fx2 - 4]

=15x2(rx +2rx-z)
f(x) =0 ifx =0-2, 2-so x =

-202 are critical

numbers

2

sign chart
# - 2 ... 8 =>

2 *
for /frx =

- 1
↑
fryx=1

↑
+(x =3

fixisreffeesfirewirefreestand;fior-sraroarra
#(((f/f H(f#(*), AA)r-)! her);o-0 -0 -0

*fix) is increasing on Foo-2U201 and

is decreasingon 1 -20 Wr0_2

fix has a local max af x = - 2 with valua

f(2) =31- 25 - 20- 23 =64

X =2 with valueand a local25-zorz=-64
no extrema af x =o
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Example. Let f(x) = x2 � 2 ln(x). Find all local extrema.

I f(x) =2x - 2. Find when

f(x) =0 and
fix) =2x- *DNE

2x - E =0
=>x=0_ f(xDNE

x+Ex
=)
x-2x =x

=>2x2 =2

=)x2 ==(x =

I) caus

f(x) =0

=>Ifappears our critical numbers are x= -0.

Noty fix is only defined for X-O as -ihrer farm isundefined

otherwis

=>the onlycritical number we need to consider is x=

is a
importantnumber,

I butnota
criticia

↓
member to consider
X=0 =>> x=1 *

size chartfor i
tr

↑

fix) =2x
- E

=- +r x=2

f(z) =2(2) - E
=4 - 1 =30

=1 - 4 - 0

*Sofrx
=x2 - 2/nx is decreasing on toand increasing on (a)

Arsoro has
a

local min atx= -
and its mir value s ~
f(r =12- 2(r =
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4.3.2 Second Derivative

Consider the second derivative:

Definition. If f 0(x) is increasing, then f is

Definition. If f 0(x) is decreasing, then f is

Definition. If f changes concavity at x = c, then

Example. Determine the intervals of concavity for f(x) = x4 � 2x3 + 1.

fix, which is the firstdominative of fra

concare up frx
=>Equivalently: If fx10, then ⑧ 1

decreasin ·

fof is concave up fast
f-0

decreasing
·..
froslow

f -0 f=0

corcare down f of0
=>If fireso, then

f is concurs down

f ·
f= - 0

L ~fra

rfrel is an
inflection point

rafral
inflection point

⑧

-
concare dow -

concave up

whatis the size of fk?

f(x) =4x3 - 6x2
f

f(x) =12x - 12x Mote exists evrenhard

= 12x/x -1)

so EO and x= arc potential inflection points

&Make size chart

for fre
*xo =@=> x=1

size chartfor ↑
f(x) =12k((x- 1 fryx=-1 +ryx=

I
fr x =2

freeride,freizer rent, far arraAle
erfire; #Af - O
10 ~0 [
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Example Continued.

You try!

Example. Find the intervals of concavity and the inflection points for f(x) = 2x4 + 8x3 + 12x2 � x� 2.

*Analyze sign chart

fix is concare up on --u(1_af
D

and is concern down on ~
D

There are inflation pains located atX=
8and x =1

Inflection points:fr and - f(x

=>foro"-zohr and 1-2 fr

=10_1 and ~_ of
1

*
W

↓ f(x) =8x3 +24x2 +24x - 1

f(x) =24 x2 +48x +24 -notfoexists everywhere

=24x2 +2x +y)

=24xray see

So x=-1 is a possible inflection point

E

.. x=- -

f.9-fr
↑
+(x =0

f"-2=24f2+112 f"(0 =

2yr0+12

=Af = ((()
-0

-0

5 fre has no inflection points and is

concave upon -- U/-of
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Second derivative test for local extrema: What can you say about extrema when f(x) is concave up?
Down?

Second derivative test: Suppose (c, f(c)) is a critical point. Then,

• If f 00(c) > 0, then

• If f 00(c) < 0, then

• If f 00(c) = 0, then

Example. From before: Let f(x) = 2x3 + 3x2 � 12x+ 1. Use the second derivative test to find extrema.

concave up Co2 ava
down

⑤

loca
Max

↑oc min

afrail is a local minimum

frar is a local maximum

so informations use firstderivative test

f(x)
=6x2 +6x - 12, not itexists everywhere

= 6(x+x -2]
~sett

=6f(x +2)(x - 1) - ⑧

So x= -2 and x =1 ar critical 1-mbars

Raa f(x) =6x2 +6x - 12

f(x) =12x +6

of f

x =-2
:f2 =
12-2 +6 =

- 18 - 0 =local maxnatx=

- 2

x=1:f/1 =12(1)
+6 =1850 local min off atx=1
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You try!

Example. Let f(x) = 2x2 ln(x)� 11x2. Find all local extrema using the second derivative test.

Question. Should you use the first derivative test or the second derivative test?

f(x) =fxh(x) +12x.) - z2x
2x

=4x.(x) - 22x

=yx-4x - zox

Usef
=4x f(x) - 53 =0

X =0 is a critical number and so is the solution to

- (1(x) - 5=0 =(x) =5
5

Idefined
=)

x =2

Recall f(x)=4x.(x) - 20x

=>f(x) =(.4x +4(y)) - 20

f(25) =fy.(125) +4] -20

=20 +4] - 20 =4

- O

so o has a local min at
x=e5

fre =252 (net - res
with value

· If fix is easy
to finder no complicated rules necessary

then the second derivative testis also quicker

· If fire requires a complex rule to findthan use

the firstderivative test

~firstdarivative always works
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4.4 Indeterminate Forms and L’Hopital’s Rule

Learning Objectives: After completing this section, we should be able to

• apply L’Hopital’s Rule to evaluate the limit of an expression in an indeterminate form.

Recall that

Remember, when talking about indeterminate forms,

Theorem (L’Hopital’s Rule). If lim
x!c

f(x)

g(x)
is

Important!

• This is not

• Only applies

Example. lim
x!1

x+ 1

x2 � 5

0a and - an indeterminate forms
-

- ↑numaratorO
Mumarator -a

danominatoro denominator -> 0

itis always in the contextof limits

sometimes spelled Hospital fielding
O
↑ or ⑳ indeterminate formsthen

=
if the second limitexists

the Quotient rule

of the theorems conditions holdie.
the original limithas an indeterminate form of to ort

this is on as the degree is his her in

denominator than numerator
explainwork
↓
+ 1+0

vox-s e-o=xr=0

↑
justify which

form
indofarminate
applies a everytime you apple Lopita'srule

State You are using itAl and

justify ifwrite the applicable indeterminate

form
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Example. lim
x!0

sin(x)

x

You try!

Example. lim
x!0

sin(7x)

4x

You try!

Example. lim
x!1

3x2 + 2x� 1

8x2 + 100

Note Sinror =0

Xk= =0

&Sinter
Cosix

sine in case
&x =

=(p =

Whatdoes this imple? Both sine and Igo to 0 af

X=x same rate when evaluating the limit

·
sink · for a rear or sink an X

- are roughtthe same
slops is Sama

af x =0

/in Sinxx
Ri cos X).7

x-0 4x r fro Y

205/7.01.7
-

4

==I

f styt

= =
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Example. lim
x!0

x� 2

x2 + 4

Example. lim
x!0

x sin(x)

1� cos(x)

Example. lim
x!1

ln(x)

2
p
x

- =
- =- Notindeterminate so we cannot

us L'Hopital'srule.

-.......

↑ ry to use ↳Aeven though itdoesn'tappl

Ex ONEas in the form nonzero constant

6

-> oor-
*

/im snrx

to i-coser to ticostersin

8 - - snrx)

X-s/X+sinrx 0.cosrol +sinol-=x sinrx
-

Sinro

TH lim Ex. since 1.cosixes
+20s/x)

o cos(x)

Ausa productin 0.f-sinrorl +cus for cosrof 0 f(f

wrie/char I
20s/o

-
I

if
accessary
~sine

when =2

-V ⑳

H X

r f
xer=f et notpressantsimply first

- i+t

-Xo* =I
t

-
=

0
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You try!

Example. lim
x!1

x

(ln(x))2

What about other indeterminate forms?

Consider the indeterminate form 0 ·1:

• Need to

• Note:

Example. lim
x!0+

x ln(x)

zirz
deta
chain rate.

X
=z. hx

rar-

-

co Diverges to co

ONE

0.0 -0a arc indeterminate when

considering limits

modifyitinto a
fraction yielding an

indeterminate form of =>or can change problem

0 -- in limitform~more
a time truncrator

into the denominator of the

-> Iin limitform denominator

-> off form as

x-0 and hrx- - 0 when x -of

Two options
↑ex

/in
-

x
Fr or

x +of *

0
-

=>East
to aH
x2x -(in - xee xf0

= - 0 =0
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You try!

Example. lim
x!1

e�xx2

Example. lim
x!⇡

2
�

⇣⇡
2
� x

⌘
tan(x)

Note - -10 as x -0

x
-
10 as x -a

= O

-X

* will keepgetting worse when approing LA

*- x -0
as x -Er

fan() -so

If fans contextsecret Sex alplar in a limitthan

convert to sinc and cosinc o start

- x). sin
- Orsin

--
Lusr 0
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4.7 Optimization Problems

Learning Objectives: After completing this section, we should be able to

• convert an optimization problem in words into a mathematical optimization problem.

• solve an optimization problem.

Now that we have tools to find extrema, we can use them to solve real-world problems!

Example. Suppose x and y are 2 numbers. Find these two positive numbers satisfying the equation xy = 3
and the sum x+ 2y is as small as possible.

Not on Exame

*040 (sist restriction

x y=3 constraintequation

minimum of X2y (objective function

=Min z =x +2

satisfying the constraintand size restrictions

· Write the objective frate in terms of one variable

=>use tha constraint equation to do +Lis

x y =3

= =

=>Replace all is in objective facto

x +2x =x +2(2) =x +

=f(x)

Minimize frx) =x+ for to

critical numbers are when f(x)
=

0 or fire DNE

frx =x +q =
x +6x

- 1

- 2

=>f(x) =1 +6-1x

= -

Notc fe ONEwhen x =0. Setf(x =1 - 2 =0

=>
= =1.x

2
=

6

= x =IX

So x= -0.5 are critical numbers

↑onlyuna satisfying sign restriction

Use and darinative testto determine ifte is location of min



f(x) =1 - 6x
- 2

- 3

f(x) =- 61 -2)x - s
Evaluate f=0 =x=5 is location ofmin

still need to give :1==came from constraintequ

= =E

the optimal numbers arc x =5 and
=s
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Example. A rectangular pen is being built against the side of a barn. There is 1000 m of fencing available.
What dimensions of the pen maximize the area of the pen?

Implicit sig restrictions x 10 x30

Barn constraint:1000m fence available

total fence used
=

x +x
+X

2x +1 =1000

objective featur
X X

Maximize arca=rength! (width
=(x)ry

↓
A =x.

2x +x =1000

=>y=

1000 - 2x

A =xy
=x(1000 - 2x)

So maximize A =x(1000 - 2x)

=A=100ox - 2x2

A =1000-4x_not Aexists everywhere

1000 -
4x o

=>lo.=250
=

so x
=250m S a critical number

# 250
⑳*

Sign chart ↑
for A=1000- 4x

frx= +- 1 x =1000

=>A=1000 - 4-80 A=1000 -4.1000 - 0

So x=250m is location of max

RxcaN =1000-2x

- *=
1000 - 2(250) =500m

The optimal dimensions of the per
-- 250m of fence

parpendicular to barn and 500m offence

parallel to barn
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Example. A rancher is building 2 adjacent, rectangular pens against a barn, each with an area of 50 m2.
What are the dimensions of each pen that minimize the amount of fence that must be used?

Barn sign restrictions:X0-10

& constraint:Area =50m

X X X A
=xy =050 =x.

war
~ Objective frate:

minimiza fence used

total fen
=
x ++x

+y +x =
3x +2y

50=x -y

= =

F =3x +2y =
3x +z/=)
=3x+

-
=

3x +100x

- 2

f =3 +100)- 1)x

=3-. Nat FONE if x =0

F=3-
=1x

2
=

10

=>x=
critical numbers are x = or

one satisfyingto

sign chart for
-

o

=>=@x

* #
-

+rx= + x =100

F=3- F
=

3 - 4

==-~O

so x= is ↑oc ator of min

50

1
== ==

dimensions are m of fence epigfarm
The optimal parate

and

50
er of fence orcular to barn, for each pen.
/
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4.9 Antiderivatives

Learning Objectives: After completing this section, we should be able to

• find antiderivatives of given functions.

We’ve spent the majority of the semester taking derivatives. How do we undo taking a derivative?

Definition. An antiderivative of f(x) is

They are not unique!

Example.
d
dx (2x

3 + 4) = 6x2.

Antiderivatives come in in a 1-parameter family.

Notation:

Example.

Z
6x2dx = 2x3 + C

darvative is freefunction Frx) whose

frx =f(x)

So, an antidarivative for 6x is 2x3 +4

butso -s 2 x
3
- 9

and 2x++- 2

-

-

27...

f(x) = 2xP
+C is the antiderinative for frx =6x2

-

where C is a parameter thatis anyconstant

number

Dontseparate the antiderivative from its family
integrand find

the antidarivation

Ex) =(f↳
of thisfix is the antiderivative

dx of fix with respect

- ↳ differentic to X
-

antidarrative Tere dates there or

featu ↑ integration ↑ -frx is the indefinite

integral of fret with
-

respectto X.

Entegrandi Gx2

Differential: dx

Antidaminative:2x+(

finding an antidarivative 3 callac integrating, justas

find ing a dar native is called differentiating.

When wer for
have the integral symbol f you always ezed

a corresponding differential
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Let’s find antiderivatives for basic functions.

1. Powers

Example.

Z
x5dx

2. Constant Multiple Rule

Example.

Z
6x2dx

Reca *
xx=p. xP

-
1

↑) multiplebe
the power

2/ subtract from the
power

To undo:

1) Add 1 to power
2) Divide bythe new power

~xdx =rx+C, for pe-

power is p=5
Double check

- &x(6x+c
-rx +

=x +c

=5x5 +0 =

x5

Recall afre=a&fre =afw

where a is anyconstant

=>same holds for integration

↑a freidx= affixidy, where a is anyconstant

=6xdx technically this is

↑(w c
A

=6x Istill rapras ans-or adding an arbitranc

constant, and
=6.5 x+6.

6 fines an arbitrary
=2x3 +c Constantis still

arbitrar
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3. Sum Rule

Example.

Z
(6x2 + x5)dx

4. Trig Rules

•
Z

cos(x)dx

•
Z

sin(x)dx

•
Z

sec2(x)dx

•
Z

csc2(x)dx

•
Z

sec(x) tan(x)dx

•
Z

csc(x) cot(x)dx

5. Inverse Trig

•
Z

1

1 + x2
dx

•
Z

1p
1� x2

dx

•
Z

� 1p
1� x2

dx

Recal(fre) +gru)=f(x +g(x) =f(x +grx

~(frefgrer/dx =ffredx fgixdx

2 constants intot
absorb all arbitrary

-sin(x) +C

--cos() +C

varify casino) =
- fsine) to since

=fanff C

=- cotrx
+C

=Sec/ +C

= - cs(x) +C

-arctany+C

-aresin +C

=arcos + C
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6. Logs and Exponentials

7. Constant Chains

Example.

Z ✓
x+ 14�

p
x3 + 3x�6 � 2

x
+ cos(4x)� sec2(6x)/8 +

1

3
e�x � 4

1 + x2
+ ⇡x

◆
dx

Recall:c=e =>.cdx =
e+2

=>*dx =(((x)) +c

Note (ax-it
power base

Monsonsense.Larkdivide
by

*Isinraxiax =f(cosrox) + c
· accounts for

"3x
~

3
↳

-oneworks for constantmultiples

=>Double check (coster) tef
frul-> cosrul g(x)=3X

firul - simrurfi g(x)=3

= fgre.gr-frax. = sindxf=sin re

RuiniIf Frx-fferdy, than sfradx= flax +Cfor constanta

Caution:Noncxample:Sin2x2dx cosrext.

Note 2x2 is nota constantmultiple of X

+20S/4x/1

-(x+yy.fr.xyz-secee
+Jax

1

~xdx =x1 =x+c

Nidx =514.x0dx =

14x
=14x+

+
x=- Ex+cxdx =f(x4x =(-1

1 - 6+

↑3.xdx =3x + =

= 5x
- 5
+c

/(irz(xdx =-2*dx =-z-((x))+c

↑(04xdx =ysin(4x +

-scrxox=- sectordx=-8 tanrox
+C= - to fanbelt (

↑
- X

Sex =fex1 =

-

z
+c

-4 fxzdx=- 4-arctaner to
+xdx =4

+c
Int

=-x-5-zinxsi-stars-- Paranert


