4.1 Maximum and Minimum Values

Learning Objectives: After completing this section, we should be able to

• find absolute extrema and local extrema of a function via its derivative.

Here are some questions we are trying to answer:

• How many items should a manufacturer make to

• What trajectory of an object

• What position gives

Here are some informal definitions. See the textbook for the formal definition if you are interested.

There are some fringe cases

Fact: If
$$f(x)$$
 is continuous on $[a, b]$, then, by the Externa Value Theorem, global extranger
exist. These two extrema either occur at a critical number
GT an endpoint.

Example. Let $f(x) = e^x \sin(x)$ on [-2, 7]. Find the absolute maximum and minimum.

To find critical numbers, set
$$f'(x) = 0$$

 $e^{X} \cdot \cos(X) + e^{X} \cdot \sin(X) = 0$
 $= \sum_{x \in X} \left[\cos(x) + \sin(x) \right] = 0$
 $4 \cos(x) + \sin(x) = 0$
 $\cos(x) + \sin(x) = -\cos(x)$
 $= \sum_{x \in X} \sin(x) = -\cos(x)$
 $= \sum_{x \in X} \sin(x) = -1$
 $\cos(x)$
 $= \sum_{x \in X} \sin(x)$
 $= -1$
So posing a calculater, $\tan(x) = -1$ for x in $\left[-2,7\right]$ if
 $X = -\prod_{x \in Y} \frac{3\pi}{4}, 2\prod_{x \in Y} \cos(x)$

Check endpoints and critical n-nbecs

$$f(x) = e^{x} \sin(x)$$

$$f(-2) = e^{-2} \sin(-2) \approx -0.12 \text{ f}$$

$$f(-\frac{\pi}{4}) = e^{-\frac{\pi}{4}} \sin(-\frac{\pi}{4}) \approx -0.3224$$

$$f(-\frac{\pi}{4}) = e^{-\frac{\pi}{4}} \sin(-\frac{\pi}{4}) \approx -0.3224$$

$$f(3\frac{\pi}{4}) = e^{-\frac{\pi}{4}} \sin(\frac{3\pi}{4}) \approx -172.64 \iff 9 \text{ lobel} \text{ min value } B \text{ app roximately}$$

$$f(7) = e^{-3\pi} \sin(77) \approx -172.64 \iff 9 \text{ lobel} \text{ max value } B \text{ app roximately}$$

$$f(7) = e^{-3\pi} \sin(77) \approx -172.64 \iff 9 \text{ lobel} \text{ max value } B \text{ app roximately}$$

$$f(7) = e^{-3\pi} \sin(77) \approx -172.64 \iff 9 \text{ lobel} \text{ max value } B \text{ app roximately}$$

$$f(7) = e^{-3\pi} \sin(77) \approx -172.64 \iff 9 \text{ lobel} \text{ max value } B \text{ app roximately}$$

We need to be careful with our terminology.

The global maximum value is approximately 720.47 (y-coordinate)
The global maximum occurs at or is located at

$$X=7$$
 (x-coordinate)
s gle global max is the pointy i.e., an x-and y-value;
 $\approx (7,720.47)$
point
othe global minimum value is approximately -172.64
(x-coordinate)
othe global minimum value is approximately ($\frac{7\pi}{4}, -172.64$)
glie global minimum is approximately ($\frac{7\pi}{4}, -172.64$)
point

4.2 The Mean Value Theorem

Learning Objectives: After completing this section, we should be able to

• use the Mean Value Theorem and apply it to prove other results.

Example. Suppose you are driving on a highway. You note that you have travelled 100 miles in the last 2 hours. What do you know about your instantaneous velocity at any point on the trip?

At some point, the instantancous velocity Must be 50 mph. If you start out slow, then go fast then at some point you were travelling exactly at 50 mph.

Theorem (Mean Value Theorem). If f is continuous over [a, b] and differentiable on (a, b), then, there is at least one number C in (a, b)such that the instantons rate of change of f at C is the average rate change of f over [a, b]; is, $f'(c) = \frac{f(b) - f(a)}{b - a}$

Example. In Iowa, there are marks on the interstate highway every 0.1 miles visible to an airplane or helicopter. The speed limit on the interstate is 70 mph. A police helicopter notices that a car crosses one mark and then 4.8 seconds later the car crosses the next mark. Will the driver get a speeding ticket?

Car travelled 0,1 niles in 48 seconds.
Let
$$d(t)$$
 be the distance at time t between
the car dout the initial mark.
=> $d[0]=0$ miles
 4.8 seconds. $\frac{1}{60}$ seconds. $\frac{1}{60}$ min = $\frac{1}{750}$ hours
 $=> d(\frac{1}{750})=0.1$ miles.
Note, $d(t)$ is continuons on $[0, \frac{1}{750}]$, and
differentiable on $(0, \frac{1}{750})$. The mut obser promises
there there is a c in $(0, \frac{1}{750})$ such that
 $d'(c)=\frac{d(\frac{1}{750})-d(0)}{\frac{1}{750}-0}=\frac{0.1-0}{\frac{1}{750}}=75$ mph
The car gets a speeding tratet!

4.3 Derivatives and Shapes of Graphs

Learning Objectives: After completing this section, we should be able to

- find the intervals of increase and decrease of a function using the first derivative of the function.
- find the intervals of concavity of a function using the second derivative of the function.

4.3.1 First Derivative

Definition. Increasing/Decreasing

• If $f'(x) > 0$ on an interval, then $f(x)$ is increasing on that interval
• If $f'(x) < 0$ on an interval, then $f(x)$ is decreasing on what interval
Example. $5l_{opc} \neq 0$ $5l_{opc} \neq 0$ $5l_{opc} \neq 0$
Fact: The only places f changes from increasing to decreasing
or decreasing to increasing is when fire)=0 or when f'DNE
The first derivative test for local extrema: If $f(x)$ is continuous on $[a, b]$ and differentiable on (a, b) except at $Crific_{a}$ $n - n b crs , then$
• If f'(x) changes from positive to negative at X=C, then there is a local maximum located at X=C
 If f'(x) changes from new otive to positive at X=C, then there is a local minimum located at X=C If f'(x) doesn't change

Example. Let $f(x) = 2x^3 + 3x^2 - 12x + 1$. Find all local extrema.
$f'(x) = 6x^2 + 6x - 12, \text{ Note } f'(x) = exists everywhere$
$= 6 \left[x^2 + x^{-2} \right]$
$= 6 [(x+2)(x-1)] \stackrel{(set)}{=} 0$
So, f'(x)=0 when x=-2 and when x=1. These are the critical numbers
1) Determine intervals of increasing and decreasing.
· Draw a number line and label it Test values between critical numbers to determine the sist of fix)
only X-values where f can change
s ion chart $+$ $+$ $+$ $+$ $+$ $+$ $+$
tor $f(x) = 0$ in row $f(x) = -3$ $\chi = -2$ try $\chi = 0$ $\chi = 1$ try $\chi = 2$
$\begin{array}{c} A \mid v \neq y \\ A \mid (-3) = 6 (-3+2)(-3-1) + f'(0) = 6 (0+2) (2-1) \\ (+) + A \end{pmatrix} \not (-1) \\ (+) + A \end{pmatrix} (-1) \\ (+) + A \end{pmatrix} \not (-1) \\ (+) + A \end{pmatrix} \not (-1) $ (+) + A \end{pmatrix} (-1)
3) Interpret the sign chart and apply first derivative test
Note, $f'(x) > 0$ on $(-\infty, -2)$ and $(1, \infty)$,
50 $f(x)$ is increasing on $(-\infty, -2) \cup (1, \infty)$
Note, $f'(N < 0$ on $(-2, 1)$, so $f(x)$ is decreasing on $(-2, 1)$
1st duriv test;
= local max at $X=-2$
=2 [so] with $x = 1$

 $| o c_{a} | = \max value a_{a} + x = -2 \quad i_{s} \quad f(-2) = 2(-2)^{3} + 3(-2)^{2} - i_{2}(-2) + i = 2i \\ | o c_{a} | = \min value a_{a} + x = 1 \quad i_{s} \quad f(1) = 2(1)^{3} + 3(1)^{2} - i_{2}(1) + i = -6$

You try!

2

Example. Let $f(x) = 3x^5 - 20x^3$. Find all local extrema.

$$= \sum_{x \in Y} f'(x) = 15 x^{4} - 60 x^{2} \qquad (Aotc, f'(x) = xists every where)$$

$$= 15 x^{2} [x^{2} - 4]$$

$$= 15 x^{2} [(x+2)(x-2)]$$

$$f'(x) = 0 \quad if \quad x = 0, -2, 2, so \qquad x = -2, 0, 2 \quad arc \quad critical$$

$$Avam backs$$

$$\begin{array}{c} \text{sign chart} & \begin{array}{c} + & -2 & & 0 & = & 2 \\ f_{\alpha} & & + & f_{\gamma} & \chi_{z=-3} & + & f_{\gamma} & \chi_{z=-1} & & + & f_{\gamma} & \chi_{z=1} \\ f_{\gamma}(\chi) = |S x^{1}(\chi + 2)(\chi - 2)| f_{\gamma}(3) = |S(-3)(-3 + 2)(-1) - |S(-1)(-1 + 2)(-1 - 2)| f_{\gamma}(1) = |S(-1)^{2}((1 + 2)||-2)} & & f_{\gamma}(3) = |S(-3)(-3 + 2)(-3 - 2)| \\ f_{\gamma}(\chi) = |S x^{1}(\chi + 2)(\chi - 2)| f_{\gamma}(3) = |S(-3)(-3 + 2)(-1)| f_{\gamma}(1) = |S(-1)^{2}((1 + 2)||-2)} & & f_{\gamma}(3) = |S(-3)(-3 + 2)(-3 - 2)| \\ f_{\gamma}(\chi) = |S x^{1}(\chi + 2)(\chi - 2)| f_{\gamma}(3) = |S(-3)(-3 - 2)| f_{\gamma}(3) = |S(-3)(-3 + 2)(-3 - 2)| \\ f_{\gamma}(\chi) = |S x^{1}(\chi + 2)(\chi - 2)| f_{\gamma}(3) = |S(-3)(-3 - 2)| f_{\gamma}(3) = |S(-3)(-3 + 2)(-3 - 2)| \\ f_{\gamma}(\chi) = |S x^{1}(\chi + 2)(\chi - 2)| f_{\gamma}(3) = |S(-3)(-3 - 2)| f_{\gamma}(3) = |S(-3)(-3 - 2)(-3 - 2)| \\ f_{\gamma}(\chi) = |S x^{1}(\chi + 2)(\chi - 2)| f_{\gamma}(3) = |S(-3)(-3 - 2)| f_{\gamma}(3) = |S(-3)(-3 - 2)| \\ f_{\gamma}(\chi) = |S x^{1}(\chi + 2)(\chi - 2)| f_{\gamma}(3) = |S(-3)(-3 - 2)| f_{\gamma}(3) = |S(-3)(-3 - 2)| \\ f_{\gamma}(\chi) = |S x^{1}(\chi + 2)(\chi - 2)| f_{\gamma}(3) = |S(-3)(-3 - 2)| f_{\gamma}(3) = |S(-3)(-3 - 2)| \\ f_{\gamma}(\chi) = |S x^{1}(\chi + 2)(\chi - 2)| f_{\gamma}(3) = |S(-3)(-3 - 2)| \\ f_{\gamma}(\chi) = |S x^{1}(\chi + 2)(\chi - 2)| f_{\gamma}(3) = |S(-3)(-3 - 2)| f_{\gamma}(3) = |S(-3)(-3 - 2)| \\ f_{\gamma}(\chi) = |S x^{1}(\chi + 2)(\chi - 2)| f_{\gamma}(3) = |S(-3)(-3 - 2)| \\ f_{\gamma}(\chi) = |S x^{1}(\chi + 2)(\chi - 2)| f_{\gamma}(3) = |S(-3)(-3 - 2)| \\ f_{\gamma}(\chi) = |S x^{1}(\chi + 2)(\chi - 2)| f_{\gamma}(3) = |S(-3)(-3 - 2)| \\ f_{\gamma}(\chi) = |S x^{1}(\chi + 2)(\chi - 2)| f_{\gamma}(3) = |S x^{1}(\chi + 2)| \\ f_{\gamma}(\chi) = |S x^{1}(\chi + 2)(\chi - 2)| f_{\gamma}(3) = |S x^{1}(\chi + 2)| \\ f_{\gamma}(\chi) = |S x^{1}(\chi + 2)(\chi + 2)(\chi + 2)| \\ f_{\gamma}(\chi) = |S x^{1}(\chi + 2)(\chi + 2)(\chi + 2)(\chi + 2)| \\ f_{\gamma}(\chi) = |S x^{1}(\chi + 2)(\chi + 2)(\chi + 2)| \\ f_{\gamma}(\chi) = |S x^{1}(\chi + 2)(\chi + 2)(\chi + 2)| \\ f_{\gamma}(\chi) = |S x^{1}(\chi + 2)(\chi + 2)(\chi + 2)(\chi + 2)| \\ f_{\gamma}(\chi) = |S x^{1}(\chi + 2)(\chi + 2)(\chi + 2)(\chi + 2)| \\ f_{\gamma}(\chi) = |S x^{1}(\chi + 2)(\chi + 2)($$

 $||\rangle$

2)

3)

and it's min value is

 $f(1) = 1^2 - 2 h(1) = 1$

Example. Let $f(x) = x^2 - 2\ln(x)$. Find all local extrema.

X = 1

 $f'(x) = 2x - 2\frac{1}{x}$. Find when f(x) = 2 x - => DNE f(x) = 0and => x=0, f'(x) DNE $2 \times - \frac{3}{2} = 0 + \frac{3}{2}$ => x.2x = 2 .x $= 2 2 \times 2^{2} = 2$ => x²=1=> X=±1 Curse f'(x) = 0=> It appears our critical numbers are X=-1, 0, 1 Note, fix) is only defined for X>0, as -2hix) term is undefined othe ruise we need to consider is => The only critical Amber is a important number, but not a criticial I number to consider x=1 X=0 sign chart for $\frac{1}{1}$ + $\frac{1}{1}$ $\frac{1}{2}$ try X= 2 $f(x) = 2x - \frac{2}{3}$ f'(z)= 2(z)- 2 $f'(\frac{1}{2}) = 2(\frac{1}{2}) - \frac{2}{(\frac{1}{2})}$ - 4-1=3>0 = 1 - 4 < 0 So $f(x|=x^2-2\ln(x))$ is decreasing on (0,1) and increasing on (1,0) Also, I has a local min at X=1

$$f''(x) = 12(x)(x-1)$$

Example Continued.

Example. Find the intervals of concavity and the inflection points for $f(x) = 2x^4 + 8x^3 + 12x^2 - x - 2$.

Second derivative test for local extrema: What can you say about extrema when f(x) is concave up? Down?

Second derivative test: Suppose (c, f(c)) is a critical point. Then,

- If f''(c) > 0, then (c, f(c)) is a local vision
- If f''(c) < 0, then

• If f''(c) = 0, then $\land \circ$ information=) use first derivative test

Example. From before: Let $f(x) = 2x^3 + 3x^2 - 12x + 1$. Use the second derivative test to find extrema.

$$f'(x) = 6x^{2} + 6x - 12, \quad nore \quad it exists everywhere
= 6 [x^{2} + x - 2]
= 6 [(x + 2) (x - 1)] = 0
So K = -2 and X = 1 arc critical A - m bers
R_{ccall} f'(x) = 6x^{2} + 6x - 12
f''(x) = 12x + 6
X = -2 : f''(-2) = (2(-2) + 6 = -18 < 0 =) local Max A at X = -2
X = 1 : f''(1) = 12(1) + 6 = 18 > 0 => local Min of f at X = 1$$

You try!

Example. Let $f(x) = 2x^2 \ln(x) - 11x^2$. Find all local extrema using the second derivative test.

$$f'(x) = [(4x) \cdot h(x) + (2x^{2}) \cdot (\frac{1}{x})] - 22x$$

$$= 4x \cdot h(x) + 4x^{-2} - 22x$$

$$= 4x \cdot h(x) + 4x^{-2} - 22x$$

$$= 4x \cdot h(x) + 4x^{-2} - 20x$$

$$= 4x [h(x) - 5]^{-(5x+1)} 0$$

$$X = 0 \quad x = 0 \quad$$

Question. Should you use the first derivative test or the second derivative test?

Indeterminate Forms and L'Hopital's Rule **4.4**

Learning Objectives: After completing this section, we should be able to

• apply L'Hopital's Rule to evaluate the limit of an expression in an indeterminate form.

Recall that

1-mir denoninotor->00

Remember, when talking about indeterminate forms,

it is always in the context of limits

(sometimes spelled L'Hospital)
$$f(x) = \frac{f(x)}{x \to c} \frac{f(x)}{g(x)}$$
 is $\bigwedge \frac{\partial}{\partial}$ or $\frac{\partial}{\partial O}$ in determinate forms then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$
if the second limit exists

.

Important!

• This is not

• Only applies

if the theoremis conditions hold jie.,
the original limit has an indeterminate form of
$$\frac{0}{0}$$
 or $\frac{0}{0}$
Example. $\lim_{x \to \infty} \frac{x+1}{x^2-5}$ (this is 0, as the degree is his her in
denominator than numerator)
the work
 $\lim_{x \to \infty} \frac{x+1}{x^2-5}$ (LH) $\lim_{x \to \infty} \frac{1+0}{2x-0} = \lim_{x \to \infty} \frac{1}{2x} = 0$
 $\lim_{x \to \infty} \frac{1}{x^2-5} \sum_{n=0}^{\infty} \frac{1}{2x-0} = \lim_{x \to \infty} \frac{1}{2x} = 0$
 $\lim_{x \to \infty} \frac{1}{x^2-5} \sum_{n=0}^{\infty} \frac{1}{2x-0} = \lim_{x \to \infty} \frac{1}{2x} = 0$
 $\lim_{x \to \infty} \frac{1}{x^2-5} \sum_{n=0}^{\infty} \frac{1}{2x-0} = \lim_{x \to \infty} \frac{1}{2x} = 0$
 $\lim_{x \to \infty} \frac{1}{x^2-5} \sum_{n=0}^{\infty} \frac{1}{2x-0} = \lim_{x \to \infty} \frac{1}{2x} = 0$
 $\lim_{x \to \infty} \frac{1}{x^2-5} \sum_{n=0}^{\infty} \frac{1}{2x-10} \sum_{n=0}^{\infty} \frac{1}{2x-10} = \frac{1}{2x} = 0$

Example:
$$\lim_{x \to 0} \frac{\sin(x)}{x}$$
 Note $\sin(0) = 0$
 $\chi|_{\chi \ge 0} = 0$
 $\lim_{x \to 0} \frac{\sin(x)}{x} \left(\frac{(LH)}{2}\right) \lim_{x \to 0} \frac{\cos(x)}{1}$
 $= \frac{\cos(0)}{1} = 1$
 $\lim_{x \to 0} \frac{\cos(x)}{1} = \frac{1}{2}$
 $\lim_{x \to 0} \frac{\sin(7x)}{4x} = \frac{1}{2}$
 $\lim_{x \to 0} \frac{\sin(7x)}{4x} = \frac{\cos(7x)\cdot7}{4}$
 $= \frac{\cos(7\cdot0)\cdot7}{4} = \frac{1}{2}$

You try!

Example.
$$\lim_{x \to \infty} \frac{3x^2 + 2x - 1}{8x^2 + 100}$$

$$\lim_{x \to \infty} \frac{3x^2 + 2x - 1}{8x^2 + 100} \stackrel{(LH)}{=} \lim_{x \to \infty} \frac{6x + 2}{16x}$$

$$\stackrel{(LH)}{=} \lim_{x \to \infty} \frac{6}{16} = \frac{6}{16} = \frac{3}{8}$$

Example
$$\lim_{x \to 0} \frac{x-2}{x^2+4} = \frac{9-2}{9} = -\frac{2}{4} = -\frac{1}{2}$$
 Not indetermine so us const
use Littopitels rule.
Try to see Lift even though it doesn't apply

$$\frac{(Litt)_{1}}{x+9} = \frac{1}{2x} \quad \text{DVE with the free index of the pitels rule.}$$
Example $\lim_{x\to 0} \frac{x\sin(x)}{1-\cos(x)} = -> \frac{0 \cdot \sin(0)}{1-\cos(0)} \Rightarrow \frac{0}{1-1} = -> \frac{0}{0}$

$$\lim_{x\to 0} \frac{x \sin(x)}{1-\cos(x)} = -> \frac{0 \cdot \sin(0)}{1-\cos(x)} \Rightarrow \frac{0}{1-1} = -> \frac{0 \cdot \cos(0)}{\sin(x)}$$

$$= \lim_{x\to 0} \frac{x \cdot \cos(x) + 1 \cdot \sin(x)}{\cos(x) + 1 \cdot \sin(x)}$$

$$= \lim_{x\to 0} \frac{x \cdot \cos(x) + 1 \cdot \sin(x)}{\cos(x)} = -> \frac{0 \cdot \cos(0) + \sin(0)}{\sin(x)} \Rightarrow \frac{0 \cdot \cos(0) + \sin(0)}{\sin(x)} \Rightarrow \frac{0! + 0}{0} \Rightarrow \frac{0}{0}$$

$$= \lim_{x\to 0} \frac{1}{x \cdot \cos(x)} + \frac{1}{\cos(x)} + \frac{1}{\cos(x)} + \frac{1}{\cos(x)} = \frac{0}{1+1}$$

$$= 2$$
Example $\lim_{x\to 0} \frac{\ln(x)}{2\sqrt{x}} = \lim_{x\to \infty} \frac{\ln(x)}{2\sqrt{x}} = -> \frac{0}{x} \cdot \frac{1}{x} \cdot \frac{1}{x}$
Not pleasant sinplify first $= \lim_{x\to 0} \frac{x^{-1}}{1} - \frac{1}{x \cdot \cos(x)} = \lim_{x\to 0} \frac{x^{-1}}{1} + \frac{1}{x \cdot \cos(x)}$

$$= \lim_{X \to \infty} \frac{1}{x^{2}} = 0$$

You try!

X-)

Example.
$$\lim_{x \to \infty} \frac{x}{(\ln(x))^2}$$

$$\begin{pmatrix} (\bot^{+}) \\ = \\ (\textcircled{D}) \\ (\textcircled{$$

What about other indeterminate forms? 0.00, 0,00 are indeterminate when considering limits

Consider the indeterminate form $0 \cdot \infty$:

• Need to modify it into a fraction picking an industriminate form of $\frac{1}{2}$ or $\frac{1}{22}$ (can't change problem)

Two options

$$= \lim_{\substack{x \to 0^{+} \\ x \to 0^{+$$

You try!
Example.
$$\lim_{x \to \infty} e^{-x} x^2$$
 Note $e^{-x} - 0$ as $x - 500$
 $x^2 - 500$ as $x - 500$
 $= \lim_{x \to 0} \frac{x^2}{1 - x} = \lim_{x \to 0} \frac{x^2}{e^x}$
 (LH)
 $(\frac{E}{0})$ $\lim_{x \to 0} \frac{2x}{e^x}$ (LH)
 $(\frac{E}{0})$ $\lim_{x \to 0} \frac{2x}{e^x}$ $(\frac{E}{0})$ $\lim_{x \to \infty} \frac{2}{e^x} = 0$
 $\lim_{x \to \infty} \frac{e^{-x}}{x^{-2}}$ will here getting vorce when applying LH

4.7 Optimization Problems

Learning Objectives: After completing this section, we should be able to

- convert an optimization problem in words into a mathematical optimization problem.
- solve an optimization problem.

Now that we have tools to find extrema, we can use them to solve real-world problems!

Example. Suppose x and y are 2 numbers. Find these two positive numbers satisfying the equation xy = 3 and the sum x + 2y is as small as possible.

· Write the objective facta in terms of only I variable => use the constraint equation to do this

$$X y = 3$$

$$=> y = \frac{3}{x}$$

$$\Rightarrow Replace all y's in objective factor
$$x + 2 y = x + 2 \left(\frac{3}{x}\right) = x + \frac{6}{x} = f(x)$$
Minimize $f(x) = x + \frac{6}{x}$, for $x > 0$
Critical numbers are when $f'(x) = 0$ or $f'(x)$ DNE
$$f(x) = x + \frac{6}{x} = x + 6 x^{-1}$$

$$=> f'(x) = 1 + 6 (-1) x^{-2}$$

$$= 1 - \frac{6}{x^{2}}$$
Where $f'(x)$ DNE when $x = 0$. Set $f'(x) = 1 - \frac{6}{x^{2}} = 0$$$

Note, fix) DNE when X = 0. Set $f'(x) = 1 - \frac{6}{x^2} = 0$ => $1 = \frac{6}{x^2} = > 1 \cdot x^2 = 6$ => $x = \pm \sqrt{6}$

Use 2nd derivative test to determine if X=J6 is location of min.

$f''(x) = -6(-2) \times = \frac{12}{x^3}$ Evaluate $f''(\sqrt{6}) = \frac{12}{(\sqrt{6})^3} > 0 \Rightarrow x = \sqrt{6}$ is location of min.	
Evaluate $f''(\overline{J_6}) = \frac{12}{(\overline{J_6})^3} > 0 \Rightarrow X = \overline{J_6}$ is location of min.	
Still Aud to give y: Y = 3 < came from constraint	 . Ren
$\Rightarrow = \frac{3}{\sqrt{6}}$	
The optimal numbers are $X = \int G$ and $\gamma = \frac{3}{\sqrt{6}}$	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	

Example. A rectangular pen is being built against the side of a barn. There is 1000 m of fencing available. What dimensions of the pen maximize the area of the pen?

Implie it sign restrictions
$$X > 0, y > 0$$

Constraint: 1000m fence available
total fince used = $x + y + x$
 $2x + y = 1000$
Objective factal
maximize area = (length) (witht)
 $= (x)(y)$
 $A = x \cdot y$

$$\begin{aligned} x + y &= | 0 = 0 \\ &= > \ y &= | 0 = 0 = 2x \\ A &= x \ y &= x \ (| 0 = 0 = 2x) \\ s_0 & & n = x \ (| 0 = 0 = -2x) \\ &= > A = x \ (| 0 = 0 = -2x) \\ &= > A = x \ (| 0 = 0 = -2x) \\ &= > A = x \ (| 0 = 0 = -2x) \\ &= > A = x \ (| 0 = 0 = -2x) \\ &= > A = x \ (| 0 = 0 = -2x) \\ &= > A = x \ (| 0 = 0 = -2x) \\ &= > A = x \ (| 0 = 0 = -2x) \\ &= > A = x \ (| 0 = 0 = -2x) \\ &= > A = x \ (| 0 = 0 = -2x) \\ &= x \ (| 0 = -2x) \\ &= x$$

4

Sign chart
for
$$A' = 1000 - 4x$$

 $for A' = 1000 - 4x$
 $rry x = 1$
 $rry x = 1$
 $rry x = 1$
 $rry x = 1000$
 $rry x = 1000 - 4$
 $rry x = 1000$
 $rry x = 1000 - 2x$
 $rry = 1000 - 2x$
 $ry = 1000 - 2x$
 $ry = 1000 - 2x$

Example. A rancher is building 2 adjacent, rectangular pens against a barn, each with an area of 50 m^2 . What are the dimensions of each pen that minimize the amount of fence that must be used?

Barn
Sign restrictions:
$$x \ge 0 - y \ge 0$$

 $(austraint: Area = 50 m^{2}$
 $A=xyy = 50 = x \cdot y$
Objective facta:
minimize facts used
total facts = $x + y + x + y + x = 3x + 2y$
 $50 = x \cdot y$
 $= 3x + 2y = 3x + 2(\frac{50}{x})$
 $= 3x + 100x^{-1}$
 $F' = 3 + 100(-1)x^{-2}$
 $= 3 - \frac{100}{x^{2}}$. Note F' DNE if $x = 0$
 $F' = 3 - \frac{100}{x^{2}}$. Note F' DNE if $x = 0$
 $F' = 3 - \frac{100}{x^{2}}$. Note F' DNE if $x = 0$
 $F' = 3 - \frac{100}{x^{2}}$. Note F' DNE if $x = 0$
 $F' = 3 - \frac{100}{x^{2}}$. Note $F' = 0$
 $x = \pm \sqrt{\frac{100}{x^{2}}}$
 $= 2 - 3x^{2} = \frac{100}{x^{2}}$
 $= 2 - \frac{100}{x^{2}}$
 $= 3 - \frac{100}{x^{2}}$
 $= 2 -$

4.9 Antiderivatives

Learning Objectives: After completing this section, we should be able to

• find antiderivatives of given functions.

We've spent the majority of the semester taking derivatives. How do we undo taking a derivative?

Definition. An antiderivative of f(x) is a function F(x) whose $\int cn^{2}x a + i^{2}x^{2} = f(x)^{2} i \cdot e_{y}$ F'(x) = f(x)

They are not unique!

wh

Example. $\frac{d}{dx}(2x^3+4) = 6x^2$. So, an antiderivative for $6x^2$ is $2x^3 + 4$ but so is $2x^3 - 9$ and $2x^3 + \pi \cdot e$ in effective

Antiderivatives come in in a 1-parameter family.

$$F(x) = 2x^{3} + C$$

$$F(x) = x^{3} + C$$

$$F(x) =$$

Let's find antiderivatives for basic functions.

1. Powers

To undo:
1) And 1 to power
2) Divide by the new power

$$5x^{P}dx = ptix^{pti} + C$$
, for $p \neq -1$

Example.
$$\int x^{5} dx \qquad p \text{ over } i, p = 5 \qquad \qquad > \text{ Double check}$$
$$= \frac{1}{5+1} x^{5+1} + c = \frac{1}{6} x^{6} + c \qquad \qquad = \frac{6}{6} x^{5} + 0 = x^{5} \sqrt{2}$$

2. Constant Multiple Rule

Example.
$$\int 6x^{2} dx = 6 \int x^{2} dx$$

$$= 6 \left(\frac{1}{2+1} x^{2+1} + C \right)$$

$$= 6 \left(\frac{1}{3} x^{3} + C \right)$$

$$= 6 \cdot \frac{1}{3} x^{3} + 6 \cdot C$$

$$= 2 x^{3} + C$$

$$= 2$$

- 3. Sum Rule
- S(f(x) + g(x))dx = Sf(x)dx + Sg(x)dx

Example.
$$\int (6x^2 + x^5) dx = \int 6x^2 dx + \int x^5 dx$$

$$= (9x^3 + C) + (\frac{1}{6}x^6 + C)$$

$$= 2x^3 + \frac{1}{6}x^6 + C$$

absorb all arbitrary
Constants into 1

- 4. Trig Rules
 - $\int \cos(x) dx = \sin(x) + C$

•
$$\int \sin(x)dx = -\cos(x) + C$$

$$\int \operatorname{vcrify} \frac{d}{dx} \left(-\cos(x) + C \right) = -(-\sin(x)) + O = \sin(x)$$

•
$$\int \sec^2(x)dx = +a_n(x) + C$$

•
$$\int \csc^2(x)dx = -\operatorname{cot}(x) + C$$

•
$$\int \sec(x) \tan(x) dx = \sec(x) + C$$

•
$$\int \csc(x) \cot(x) dx = - \csc(x) + C$$

5. Inverse Trig

•
$$\int \frac{1}{1+x^2} dx = \operatorname{arct}_{an}(x) + C$$

•
$$\int \frac{1}{\sqrt{1-x^2}} dx$$
 = arcsin (x) + C

•
$$\int -\frac{1}{\sqrt{1-x^2}}dx = \operatorname{Arccos(x)} + C$$

_ Ξ

6. Logs and Exponentials

$$\begin{aligned}
\mathbb{R}_{c.c.all} : \cdot \frac{d}{dx} \mathbb{C}^{x} = \mathbb{C}^{x} \qquad \Rightarrow \quad - \int \mathbb{C}^{x} dx = \mathbb{C}^{x} + \mathbb{C} \\
+ \frac{d}{dx} \int_{x} \mathbb{C}^{x} - \mathbb{C}^{x} = \mathbb{C}^{x} \qquad \Rightarrow \quad - \int \mathbb{C}^{x} dx = \mathbb{C}^{x} + \mathbb{C} \\
+ \frac{d}{dx} \int_{x} \mathbb{C}^{x} - \mathbb{C}^{x} + \mathbb{C} = \mathbb{C}^{x} \quad \Rightarrow \quad - \int \mathbb{C}^{x} dx = \mathbb{C}^{x} + \mathbb{C} \\
+ \frac{d}{dx} \int_{x} \mathbb{C}^{x} - \mathbb{C}^{x} + \mathbb{C} = \mathbb{C}^{x} \quad \Rightarrow \quad - \int \mathbb{C}^{x} dx = \mathbb{C}^{x} + \mathbb{C} \\
+ \frac{d}{dx} \int_{x} \mathbb{C}^{x} - \mathbb{C}^{x} + \mathbb{C} = \mathbb{C}^{x} \quad \Rightarrow \quad - \int \mathbb{C}^{x} dx = \mathbb{C}^{x} + \mathbb{C} \\
= \frac{d}{dx} \int_{x} \mathbb{C}^{x} - \mathbb{C}^{x} + \mathbb{C} = \mathbb{C}^{x} + \mathbb{C} \\
= \frac{d}{dx} \int_{x} \mathbb{C}^{x} + \mathbb{C} = \mathbb{C}^{x} + \mathbb{C} = \mathbb{C}^{x} + \mathbb{C} \\
= \frac{d}{dx} \int_{x} \mathbb{C}^{x} + \mathbb{C} = \mathbb{C}^{x} + \mathbb{C} = \mathbb{C}^{x} + \mathbb{C} \\
= \int_{x} \mathbb{C}^{x} \int_{x} \mathbb{C}^{x} + \mathbb{C} = \mathbb{C}^{x} + \mathbb{C} \\
= \int_{x} \mathbb{C}^{x} \int_{x} \mathbb{C}^{x} + \mathbb{C} + \mathbb{C}^{x} + \mathbb{C} \\
= \int_{x} \mathbb{C}^{x} \int_{x} \mathbb{C}^{x} + \mathbb{C} + \mathbb{C}^{x} + \mathbb{C} \\
= \int_{x} \mathbb{C}^{x} \int_{x} \mathbb{C}^{x} + \mathbb{C} + \mathbb{C}^{x} + \mathbb{C} \\
= \int_{x} \mathbb{C}^{x} \int_{x} \mathbb{C}^{x} + \mathbb{C} + \mathbb{C}^{x} + \mathbb{C} \\
= \int_{x} \mathbb{C}^{x} \int_{x} \mathbb{C}^{x} + \mathbb{C} + \mathbb{C}^{x} + \mathbb{C} \\
= \int_{x} \mathbb{C}^{x} \int_{x} \mathbb{C}^{x} + \mathbb{C} \\
= \int_{x} \mathbb{C}^{x} \int_{x} \mathbb{C}^{x} + \mathbb{C} \\
= \int_{x} \mathbb{C}^{x} + \mathbb{C} + \mathbb{C}^{x} + \mathbb{C} \\ = \int_{x} \mathbb{C}^{x} + \mathbb{C} + \mathbb{C}^{x} + \mathbb{C}^{x} + \mathbb{C} \\ = \int_{x} \mathbb{C}^{x} + \mathbb{C} + \mathbb{C}^{x} + \mathbb{C}^{x} + \mathbb{C} \\ = \int_{x} \mathbb{C}^{x} + \mathbb{C} + \mathbb{C}^{x} \\ = \int_{x} \mathbb{C}^{x} + \mathbb{C}^{x} +$$